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NONEXPLICIT SINGULAR PERTURBATIONS

AND INTERCONNECTED SYSTEMS

- George Michael Peponides, Ph.D.
Department of Electrical Engineering

.'"University of Illinois at Urbana-Champaign, 1982

Singular perturbations have been shown to be an effective tool in

the analysis and design of systems with "slow" and "fast" dynamics. However,

the use of this tool is often inhibited by the fact that when physical

quantities are selected as state variables the model fails to be in the

standard singularly perturbed form. In this thesis we deal with such

nonexplicit models and show that for a wide class of problems a proper

5 !selection of variables leads to explicit singularly perturbed models.

Equilibrium and conservation properties are shown to provide a coordinate-

-' free characterization of two-time-scale systems. They also suggest a

Ss coordinate transformation that transforms nonexplicit models into explicit

" -:ones. This transformation is then used to study nonlinear high gain

feedback systems, thus extending earlier linear results. It is also utilized

to establish the relation between weak connections and time scales in inter-

connected systems whose subsystems possess a continuum of equilibrium points.

Finally, the methodology is applied to reduced order modeling of dynamic

. networks and it is shown that linear conservation laws lead to a linear

transformation separating the time scales even when some of the components

of the network are nonlinear. Moreover, the reduced order model retains

L the physical meaning of the original system.
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CHAPTER 1

INTIRODUCTION

1.1 Model Simplification in Large systems

An issue of paramount importance in the study of large scale

systems is that of model simplification or reduced order modeling. The

sheer size on the one hand and the richness and complexity of phenomena

* on the other make the use .of detailed models in the analysis and control

of large systems impractical if not impossible. A good analyst or designer

t knows that a model should encompass only the "relevant" behavior of the

system and should not be cluttered with unnecessary detail. Although this

may sometimes be accomplished by employing parsimonious models for the

components of the system, there are cases vhere further simplification is

needed to make the model manageable both computationally and conceptually.

A characteristic example arises in stability studies of interconnected

power systems where the use of the crudest model for each generator (the

so-called electromechanical model) results in hundreds or even thousands

of state variables. It is thus desirable to have systematic model order

reduction methods for which the approximation involved can be estimated.

Singular perturbations is a well documented [1-4] method for

reduced order analysis and design, in which dynamic phenomena of widely

different speeds are treated separately. In the short run the slow

dynamics are essentially constant and the focus is on the fast ones.

in the long run the fast dynamics settle to their "quasi-steady-state"

12 and the focus is on the slow dynamics. This ttuie-scale thinking is commn
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in diverse engineering fields (5-7]. If a small parameter e representing

the speed ratio of slow and fast dynamics can be identified this intu-

itively appealing idea leads to asymptotic analysis. Most of the

literature [8-101 is devoted to systems of the form

" f(y,z,e) y(O) = Yo
(1.1)

-= g(y,z,e) z(O) = zo

where F multiplies the z-derivatives, y is a v-vector and z is a p-vector.

Formally setting e=O in (1.1), solving

0 = g (Y.,O) (1.2)

for 7 , 7 = 'y(y) and substituting into (1.1)

dt O)AT) 7(0) Yo (1.3)

we obtair he slow reduced model. Writing system (1.1) in the "stretched"

ttime variable T -- and setting z=0 we obtain the fast reduced system (or-£

associated system or boundary layer system)

°dj

-&y zo+, 0) z(0) z (1.4)

where z (0). Variables y,z,e,t are restricted to lie in a domain

0

D : IIy-y(t)I < r, Ilz-T(t)I < r, 0 < e < 0, 0 < t < T, where r > j1yo-(o)Ij.

The following theorem relates the solutions of (1.1) with the solutions of

* -.

. "1
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Theorem 1.1 (35] Let the foLicwing conditions be satisfied.

Hi. f, af/y, af/az, g, ag/ay, ag/az are of class C° in D.

H2. The solution z,(T) of (1.4) exists on TE [0, W ], is unique, and is

asymptotically stable with respect to Z=0.

H3. The solution Y(t) of the reduced system (1.3) exists and is unique

on tE[0,TI.

W H4. The real parts of the eigenvalues of the Jacobian matrix

.g/z(y, z, 0) (1.5)

are negative on [0,T], for "=T(y).

: ,Then for sufficiently small s, the full system (1.1) has a unique

solution y(ts) on tE [0,T] satisfying the initial condition y(0,)=yo,
0

Sz(0,E)=z0 . Furthermore,

nim y(te) = y(t, on [0,T] (1.6)

N limn z(tS) =i(t)+4( ) on [0,T] (1.7)

where the limits in (1.6), (1.7) are uniform in t on [0,T].

From (1.6), (1.7) the response of y in (1.1) is approximated, to

0(e), by the response of the slow system (1.3) whereas the response of z

is approximated by a boundary layer z(-) superimposed on the quasi-steady-

state z(t)=Y(y(t)).

An extensive literature dealing with system (1.1) and the

corresponding controlled system includes results on stability [20,65,66],

4 v linear [4,67] and nonlinear [3] regulator design, controllability properties

[37]and time-optimal control [68],filtering and smoothing [69]. A basic

.. .. . . .. . . . - . . "- --,.... ,- -. . ..-_ -. . . ... ..- ,- -. .. - - - - - . ................,.
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assumption in these references is that the Jacobian matrix g/az(yz,O)

is nonsingular. When this happens we say that time scales in (1.1) are

explicit, that is, they coincide with the decomposition of the state vector

into y and z. When, however, ag/6z is singular time scales in (1.1) are

nonexplicit, that is, all states may be mixed having fast and slow parts.

Some authors treat such cases as "singular-singularly perturbed" systems

[11-13] or "generalized singularly perturbed" systems [14,15].

In this thesis we take an alternate route. We recognize that in

a wide class of systems singularity of ag/az is due to the selection of

state variables; hence a nonsingular transformation removes the singularity

of ag/az, and defines new states in which time-scales are explicit. This

approach has two advantages. First it puts the system into a form in which

the results alluded to before can be applied. Second, from the transformed

system we can easily define fast and slow reduced systems describing the

system behavior in the short run and in the long run. Following this

approach we establish a relation between weak connections and time scales

in a class of interconnected systems. Separation of time scales in such

systems leads to a physical decomposition into a slow core and a number of

weakly coupled fast subsystems. The results are further specialized to

structured interconnected systems such as power systems and other dynamic

networks.

1.2 Chapter Preview

Chapter 2 starts with a simple RC example pointing the relationship

between equilibrium and conservation properties on the one hand and time

scales on the other [16]. These properties are used in the construction of

*1



5

a transformation that makes the time scales in Linear Time Invariant (LTI)

systems explicit. Next a multi-time-scale system is viewed as a succession

of two-time-scale ones. Starting from the fastest time scale we proceed

to the slower ones, using at each step the transformation that makes time-

scales explicit. This procedure defines a sequence of "nested" reduced

:. order models. The transformation separating the time scales is then

Egeneralized to LTI systems with inputs.

In Chapter 3 the equilibrium and conservation reasoning is extended

to nonlinear systems leading to a transformation that makes time scales

r explicit in models of the form

k= h(x,c). (1.8)

if It is then shown that the results of [17-19] on high gain feedback and

disturbance decoupling generalize to a class of nonlinear systems for

which the controls enter linearly but the output map and feedback law are

nonlinear. We next turn to interconnected systems made of systems with

- equilibrium manifolds and show that weak connections give rise to two-time-

.scale behavior. A decomposition of interconnected systems into a slow core

and fast local systems leads to decentralized stability criteria based on

the results of (20].

Chapter 4 deals with time scales, coherency and aggregation in

nonlinear dynamic networks. Coherency based aggregation [21-23], a common

procedure for order reduction in power systems, is given theoretical

foundations for nonlinear electromechanical models, thus extending the

results of [24-29]. It is shown that linear physical laws result in

linear time-scale separating transformation even when some components of

..............
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the network are nonlinear. A five-machine power system example illustrates

the proposed reduced-order modeling and verifies its validity.

Extensions in several directions and possible uses of the

decomposition in direct stability analysis are discussed in Chapter 5.

-- 1BI
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CHAPTER 2

,ODELING OF TWO-TIME-SCALE SYSTEMS

2.1 Introduction

, . When the model of a real system with the two-time-scale property

is expressed in terms of physical variables it often fails to be in the

- form (1.1). An important requirement in (1.1) is that ag/az be nonsingular

along z(t). When this condition is violated the model is said to be non-

explicit and the conclusions in Chapter 1 have to be modified.

Some authors [11-13] treat nonexplicit models as "singular-

singularly perturbed" systems. Instead we approach them from the modeling

point of view recognizing that the singularity of ag/az is due to the choice

of state variables. We show that equilibrium [16] and conservation properties

provide a coordinate-free characterization of singular perturbations. These

properties are used in the construction of a transformation leading to the

explicit model (1.1) with the slow part of z(t) being 0(c). The discussion

" -" in this chapter is restricted to Linear Time Invariant (LTI) systems.

Extension of the basic ideas to nonlinear systems and applications to

interconnected systems, high gain feedback and dynamic networks appear in

Chapters 3 and 4.

In Section 2.2, a simple physical system is used to motivate the

discussion and indicate the relation between time scales on the one hand

* "and equilibrium and conservation properties on the other. In Section 2.3, the

relation is established for LTI systems and a transformation is constructed

that transforms a nonexplicit singularly perturbed model to the explicit
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model (1.1). In Section 2.4, multi-time-scale systems are treated as a

succession of two-time-scale systems and a sequence of nested reduced order

models is defined. Section 2.5 generalizes the results of Section 2.3 to

systems with inputs and Section 2.6 deals with some structured nonexplicit

models.

2.2 Equilibrium and Conservation Properties

Although nonexplicit singular perturbations occur in as simple

systems as RC-circuits they have not attracted much attention. In contrast,

explicit perturbations have been investigated for networks with "parasitic"

*: inductances and capacitances [30,31]. When such parasitics are expressed

as multiples of e .,A capacitor voltages and inductor currents are used as

state variables, the circuit model is in the explicit form (1.1). A simple

illustration is the RC-circuit of Fig. 2.1a with state equations

R1-(R1CI) dxl/dtd = -xI + x2

(R C2 ) dx2 /dtd = x- [1 + (RI/R2 )] x2 + (R1/R2) x3  (2.1)

(R1C3) dx3 /dtd - (R1/R2) x2 - [(R1/R2) + (R1/R3)] x3

where the capacitor voltages were chosen as states and td is dimensional

time. Suppose that C2 and C3 are "parasitic," say C2=C3=eC1 and that

all the resistors are of the same order of magnitude. Recognizing RIC1

as a typical large time constant and defining the slow dimensionless time

tintd/(RlCl) (32,33], (2.1) becomes
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*1 R,. 2_____ R____

IC IC 2  103 R

R[ R2

Tcl C2  10C3

T1 I

a6 FP-7509

Fig. 2.1 (a) Circuit with Rmuch larger than RV, R.

(b) Fast circuit described by (2.6).

(c) Slow reduced circuit for y in (2.33).
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dx /dt = I xj + x2

&dx2/dt = xI - [1 + (R1/R2 )] x2 + (R1/R2 ) x3 (2.2)

dx3/dt = (R1/R2) x2 - [(R1/R2 ) +. (R1/R3 )] x3

with e multiplying the derivatives of x2 and x3. Thus x, appears as the

y-variable and x2,x3 as the z-variables of (1.1) and the model is

explicit because the two-by-two matrix of x2 x3 is nonsingular. The slow

reduced model (1.2) represents the circuit with parasitic capacitors C2

and C3 opened (Fig. 2.1b), whereas in the fast reduced model (1.3) the

large capacitor C3 is shortened (30] (Fig. 2.1c).

In the same circuit nonexplicit singular perturbations occur

when all capacitors are of the same order of magnitude, say CI=C2C3C,

but the resistors are not. For example, if R and R2 are small and R3  M

is large, say

R 1 r, R2 = r/2, R3 = R, r/R = (2.3)

typical large and small time constants are RC and rC, respectively, and

in the dimensionless time variables

td td t
t -, C. , (2.4)

the circuit is described by

. (dx/dt) = dx/d- 1 -3 2 x A(e) x. (2.5)

0 2 -2-c

, - , -. -. .__ .;,,:- ...,,o,, : ,:°. ...-- . ... - . . ..- -. . . . ..,. . . . .."... ... ...: :. ;; -i-;. i .-.: .



Note that e multiplies all the derivatives in the slow time-scale t and

thus there are no explicit slow y-variables in the system. If -, that

is A(O), were nonsingular, no slow phenomenon would exist in (2.5) and

the system would not possess the two-time-scale property. However, A(O)

is singular indicating the existence of a "hidden" slow phenomenon. To

T
see this assume that x(O) =1 1 1] in (2.5). Then the slow-time

- derivatives dx/dt remain finite when e- 0 suggesting that (2.5) is a

two-time-scale system. Physically the slow phenomenon is the discharge

of the capacitors through the large "leakage" resistor R3. Neglecting
V.*

this "leakage," Fig. 2.1b, makes the slow phenomenon infinitely slow,

that is,constant and corresponds to setting e=O in the T-model of (2.5)

. dx = 1 -3 2 x A(O)x. (2.6)

L'0 2 -2

W, Since A(O) is singular the equation

A(O) x = 0 (2.7)

has an infinite number of solutions given by

x C, [1 1  ]T (2.8)

where is any real number, that is, (2.6) has a continuum of equilibrium

points. This can be seen from the circuit of Fig. 2.1b where any x such

that

,4;
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x -x 2  0, x 3 -x 2 m0 (2.9)

is an equilibrium point. The line represented by (2.8)-(2.9) will be

denoted by S.

Kirchhoff's current law (KCL) applied to the ground node of

Fig. 2.1b gives the dual property that is the conservation of total charge

for all T,

CX1 ( ) + C2 x2 ( ) + C3x3(T) = ClXl(0) + C2x2 (0) + C3x3 (0) (2.10)

which means that every trajectory x(T) of (2.6) is confined to a plane F

passing through the initial point x(O) orthogonal to the vector

[C1 C2 C3] 
T . The quantity in (2.10), constant when =O, becomes slowly

varying when e > 0, that is when the "leakage" R3 is introduced. A

circuit describing this slow phenomenon is given in Fig. 2.1c and will

be derived in the next section.

From the above discussion we conclude that the trajectories

"" x(t) of the original system 2.5 consist of two distinct parts. First

in a "boundary layer" near plane F the state x(t) rapidly approaches

line S. Then, from a neighborhood of the intersection of plane F with

line S, x(t) continues to slowly "slide" along line S. The geometry of

this situation is sketched in Fig. 2.2. Note that the behavior of x(t)

is similar to that of the explicit model, that is, a fast transient is

followed by a slow motion close to a line of "quasi-equilibria" S. The

basic difference is Lhat in the explicit model (Z.2) the plane F close

to which the boundary layer occurs, is orthogonal to axis x1 (Fig. 2.3).
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II/

Fig. 2.2 Trajectories of the auxiliary circuit in Fig. 2.1b
lie on F. Trajectories of the actual circuit Fig. 2.1a,

- are denoted by x.
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x2

FP-7507

Fig. 2.3 Equilibrium (S) and dynamic manifolds (F) of the
explicit model 2.2.
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Examination of Fig. (2.2)-(2.3) indicates that in nonexplicit models fast

dynamics are observed by all states whereas in explicit models they are

.. only weakly observed by some states (the y-variables).

This example indicates that the time scales of the original

system (2.5) are related to the equilibrium and conservation properties

of the auxiliary system (2.6) in T-scale. These properties are coordinate

free and characterize all two-time-scale systems reducible to the explicit

. model. In the next section they will serve for a choice of coordinates in

which the time scales are explicit.

2.3 Nonexplicit Singularly Perturbed Systems

The discussion of the previous section will now be generalized

* to the system

. . cdx/dt = dx/dT = A(e) x (2.11)

where xER n , A(e) is a time invariant nxn matrix depending on e, and t,

T the slow and fast time variables, respectively. The following is

assumed about A(e).

Assumption 2.1 A(c) can be written as

A(e) A + c A (S) (2.12)
0. 1

with A (a) bounded at e=0 and A(O)fA satisfying
0.

R(A ) 77(A o ) = Rn  (*) (2.13)

(*)In the terminology of [13], (2.13)-(2.14) is equivalent to ind
A A-1. In [13] it is shown that this condition is necessary for lim x(t) to
exist. C- 0
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where R(Ao) is the range space of A0 , 71(A o) is the null space of A0 , and

e denotes the direct sum of two spaces [34]. The dimensions of R(A),

7?(Ao) are

dim R(A ) = 1 > I, dim 77(A ) f v > 1, p + V = n. (2.14)
0 0

Equation (2.13) is equivalent to saying that A has a complete
0

set of eigenvectors corresponding to its zero eigenvalues, which in turn

is equivalent to the following: R(Ao ) is the invariant space (eigenspace)0

of A corresponding to the nonzero eigenvalues, and 71(Ao) is the invariant
00

space (eigenspace) corresponding to the zero eigenvalues.

To study the time-scale behavior of (2.11) the auxiliary system

dx/dT = A x (2.15)

is defined with A as in (2.12). By assumption, (2.15) has a V-dimensional
0 -

equilibrium manifold'*  (i.e. 7(A0)) S consisting of all x such that

A x = 0. (2.16)

If W is a pxn matrix, rank W=p, whose rows span the row space of A, then

[34]

Wx f 0 V xES (2.17)

To see the conservation property of (2.15) we note that if V

is a Vxn matrix, rank V = v whose rows span the left null space of A0 ,

00"' i.e. VAO M 0, then

(*)Although S is presently, simply a subspace, we call it manifold

in anticipation of the nonlinear extension in Chapter 3.
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n
V(dx/dT) = V A x 0 V T, V x(0)ER . (2.18)

Thus, the v-dimensional quantity Vx is constant along the trajectories

H 1of (2.15),

n
- V x(T) = V x(O), V x(O)ER. (2.19)

' .This means that for each value of V x(O) the trajectory of (2.15) is

. confined to a linear manifold(*) defined by (2.19).

This linear manifold called dynamic manifold F, is orthogonal

to the rows of V and contains the initial point x(0). The orthogonality

r between the left null space and the range space of a matrix [34] implies

that F is a translate of R(A ).

The above discussion has established equilibrium (Eq. (2.17))

and conservation (Eq. (2.19)) properties analogous to the ones of the

RC-circuit of the previous section (Eq. (2.9) and (2.10)). The behavior

. of the trajectories is still the one depicted in Fig. 2.2 with S and F

defined by (2.17) and (2.19), respectively. We are now ready to define

a new set of coordinates in which the time scales are explicit.

-+ Theorem 2.2 Under Assumption (2.1) the change of coordinates

y = Vx, z = Wx (2.20)

- transforms (2.11) into the explicit model (1.1) with i(t) = 0.

*A.

(*)A linear manifold of dimension r is a translation of an

r-dimensional subspace.
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Proof: Since the rows of V,W form bases for the left null and row spaces

of A0 , respectively, the transformation

T [V](2.21)

defined by (2.20) has inverse

T- =[P QI (2.22)

where the columns of P,Q form bases of 7?(A), R(Ao). Hence,
0 0

A 0AV A P V A Q V AI(E)P V A(E)Q
T (- +AI(a))T = 1 1 +

WA P WA Q W. (C)P W AI(e)Q
0 0

V A I()P V Al(C)Q

W A Q (2.23)

W A (e)P E + W A j()QL "
dy/dt f All(e) y + A12 (E) z

(2.24)

adz/dt = £ A2 1 (e) y + A2 2 (g) z

where A1 l(g) A V A1 ()P, AI2 (s) V A (e)Q, A21 () W A (c)P and

A22 (e) = W A Q + g W A1 (C)Q. (2.25)
22 0

To show that (2.24) is explicit model we need to show that A22 (0) is

nonsingular. Notice that Assumption (2.1) implies that R(Ao) is the
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eigenspace of the nonzero eigenvalues of A0 . Hence there is a pxp

nonsingular matrix G whose eigenvalues are the nonzero eigenvalues

of A such that

A Q - QG. (2.26)
0

The last relation implies

A2 2 (0) W AQ = W Q G G (2.27)

which is nonsingular.

Remark: Writing

x= L Py + Qz (2.28)

we see that y,z are the representations of x with respect to bases P,Q

of 7Z(A0 ), R(A ), respectively. Another way to view (2.28) is that Py

- is the projection of x on 7?(Ao) along R(A0 ) and hence y is the representa-

tion of this projection with respect to basis P. A similar interpretation

* holds for Qz and z.

We now illustrate the application of Theorem 2.2 with the RC-circuit

of Fig. 2.1 in which the time scales are due to large and small resistors as

in (2.3). The auxiliary system is given in (2.6) and the equilibrium and

dynamic manifolds are defined by (2.9) and (2.10), respectively. A choice

of coordinates according to these equations is

,1 ~; y = (C xl + C2 x2 + C3 x3 )/C (2.29)

*1 I-3
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z -X 1 - 2, z2 = 3 - 2  (2.30)

where the division by

Ca C1 + C2 + C3  (2.31)

in (2.29) retains the physical meaning of y as a voltage variable. In the

new coordinates the circuit is described by

(C/C 22 2 2
dy/dt = - a y + (C /Ca) z1 - (2C /Ca) z2

e(dzl/dt) = - 2z - 2z (2.32)
2

E(dz2/dt) =- y- (1 - e(C/C )) z - (4 + e(2C/Ca)) z

2a 1 a 2'

As stated in Theorem 2.2 the z-equations in (2.32) give i(t) 0. Hence

the slow reduced model is

dy/dt = - (C/Ca)7 (2.33)

represented by the circuit in Fig. 2.1c and the fast reduced model is

STd'r = - 2' -2
1 1 2

(2.34)
S-- 4

2 1 2

represented by the circuit in Fig. 2.1b where the voltages with respect to

the "reference" node 2 are used as states.

It is interesting to note the physical interpretation of the

new variables. The slow variable y is proportional to the sum of the

charges on the three capacitors and can be considered the voltage on the
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"aggregate" capacitor Ca (Eq. (2.31), Fig. 2.1c). Application of Kirchhoff's

current law to the ground node of Fig. 2.1a shows that the time derivative of

y is proportional to the current in R3. Since R3 is large dy/dt is small

and y qualifies as a slow variable. The fast variable zI equals the voltage
across R which due to the smallness of R diminishes quickly to values

* - close to zero. Hence z qualifies as a fast variable. A similar interpreta-

-7 tion holds for z2. In Chapter 4 we show that this selection of slow and

fast variables is good for a wide class of nonlinear dynamic networks.

U 2.4 Nested Reduced Order Models

In the previous section we showed how equilibrium and conservation

properties are used to transform a nonexplicit singularly perturbed model to

an explicit one. Writing the explicit model (2.24) in the fast time T and

letting e- 0 we obtain the fast reduced model

Td 22(0)2' i(O) = z(O). (2.35)

Similarly writing the model in the slow time t and letting - 0 we obtain

* "the slow reduced model

dA 11 7(0) y(O). (2.36)--- ' adt 11l(O

If the eigenvalues of A22 (0) have negative real parts the responses of

(2.35)-(2.36) are 0(e) approximations of the response of (2.24) over bounded

intervals [8-10]. If, in addition, the eigenvalues of the slow system

L- matrix All(O) have negative real parts the approximation is valid over

unbounded intervals [36].

J,
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It may happen, however, that some eigenvalues of A11 (0) are zero.

In these cases the approximation is not valid over unbounded intervals

since the response of (2.36) tends to a nonzero constant whereas the response

of (2.24) tends to zero. Treatment of (2.24) as a two-time-scale system

is inadequate because the system may have more than two time scales. Simple

"- expansions of the eigenvalues and eigenvectors, for example, show that if

A11 is singular the matrix

A~22

AA A
A21  224

which is the matrix of (2.24) in the fast time scale with A11 , A12 , A2 1 ,

A2 2 , independent of c, has 0(a2 ) eigenvalues in addition to 0(1) and 0(e)

ones.

Instead of treating the original system (2.11) as a multi-time-

scale one, we prefer to deal with only two time scales at a time. That is,

* -* starting from the fastest time AT we consider the system operating in

scale tI and t2 =t1 only. Viewed from t1 speeds are 0(l) and the rest are

2
o(l); we do not specify whether they are O(a), O(e, etc. Changing time

scales to the slower t2, some speeds are o(-) and, in time-scale t2, are

'. assumed to reach their quasi-steady-state instantaneously. The rest of the

system is again treated as two-time-scale with t2 the fast time.

To make this idea precise we employ the block diagonalizing

transformation [37,38]

. .. .,
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.-]. .. .
p [ji[I [ -2 HL -.

= (2.37)

where L,H satisfy

A2(E) + e L All(e) - A2 2 (e) L e 2 LL = 0 (2.38)

and

AL A1 2 (c)) + (AII(g) -A AI 2 (c) L) = 0. (2.39)

In the , coordinated (2.24) becomes

p N = (All(e) - A1 2 (g) L)g (2.40)

. =(A 2 2 (E) + E L A12 (c))T . (2.41)

Since A2 2 (0) is nonsingular (2.35) is a regular perturbation of (2.41) and

can be used as a fast reduced order model. However, if A11 (0) is singular

satisfying Assumption 2.1, (2.40) is nonexplicit singularly perturbed model

in the form (2.11). Hence, arguing as in Section 2.3, we apply transforma-

tion (2.20) to define slow and fast variables in time scale t2. The process

" can be repeated until all time scales are "peeled off" defining nested

reduced order models.

i,°
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2.5 Systems With Inputs

Although some control design work has been done for generalized

singularly perturbed systems [13,141, most of the literature [2-4,39-401

deals with the explicit model

All y + A1 2 z + B u
12 1

(2.42)
g =A 21 y +A 22 z + B2 u

where A22 is nonsingular. Note that in the y-equations the gain of the

1
. control u is 0(l) whereas in the z-equations it is 0(). We are interested

in conditions under which the nonexplicit model

"':'dx dxd dx f [Ao + eA,(e)]x + [B + (g)] u (2.43)

dt dT o0

where A satisfies Assumption 2.1 and B(e) is differentiable at E=0, can
0

be transformed to the explicit model (2.42).

Assumption 2.3 Let V be a vxn matrix that spans the left null space of

A. Then
0

V B =0 (2.44)

that is, V is in the left null space of B
0

Corollary 2.4 Under Assumptions 2.1, 2.3 the transformation

y Vx, , z =Wx (2.45)

transforms (2.43) into the explicit model (2.42) with A = A(O)B-2(0).G

where B2 (e) WB + gWl(c) and I is the slow control.-... o0
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Proof: Follows directly from Theorem 2.2 and (2.44).

Condition (2.44) essentially requires that the control driving

the slow variable y have 0(l) gain, as in the explicit model (2.42).

If this condition is not met the variable y, slow in the free system

(2.11), is subjected to high gain control altering the time-scale behavior

of the system. We will have more to say about high gain feedback in the

next chapter. Condition (2.44) is likely to be satisfied in well defined

. .physical problems as demonstrated by the following example.

Consider the transformer of Fig. 2.4 where L, L2 are the self-

R* inductances of the coils, M is the mutual inductance and xi, x2 are the

currents through the coils. Using xl, x2 as states, the state description

of the system is

n U. dxl/dt = - (RiL 2 /d)xl + (MR2/d)x 2 - (L2 /d) v

(2.46)
dx2/dt = (MR,/d)xl - (R2Ll/d)x2 + (M/d) v,

where d =LL 2  M

2
In the case of an ideal transformer, d = L1L2 - M 0. For

nonideal transformer with small leakage

LL - M
1 2LL = (2.47)

where a is a small positive parameter. Using (2.47) the system matrix

of (2.46) becomes
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R1  M

Vi L? R2

FP- 7508

Fig. 2.4 A nonideal transformer with small leakage.
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R 1/t R 2

A.e) 1 (2.48)

:- .- R 1  R2

1  2

or, substituting Ai i I + 0(e2)

1

A(.) -(A + A (2.49)
FE 0

where

R 1 R2

A 0 (2.50)
R R
1 2

NCF2 L2

The left null space of A
0

* S ., V f [L1  J (2.51)

and the row space of A
0

W [R1  -R2 / ] (2.52)
2

define, according to (2.45), the slow variable

y =L x + T x2  (2.53)

and the fast variable

z L x-R 2  (2.54)
2
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In the new coordinates y,z the state equations become
v i

t= [1/(T +T2)]Y + [(T-T )/2(T +T2)]z " -
dt 1 T2) 1 2) 1. ~ 2 T

dzi - 1 -) 2 1(1 (2.55)
d T 2 . )T/ I+T2)]y [T + T 2 T lT2

- + T2 vi

where T1  L1/R 12 T2 = 2/R2 are the time constants of the primary and

secondary R-L circuits. The slow model is obtained by setting e=O in

the second equation of (2.55) and substituting the quasi-steady-state

z Vi  (2.56)

into the first equation giving

= l- T( 5
dt T 1+T 2 T vT 2.7

The fast model is obtained by writing the second equation of (2.55) in

the fast time-scale and setting fi0

= - 1 - 1 1 (.8
dT (l + j z) " ( ' +t2vi " (2.58)1F 2)1z

It is interesting to note the physical interpretation of the new variables

y,z and of (2.54). By writing

y - L1 X1 +i x 2  L x +MX2 + O(+ 0() (2.59)

121

ii
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we see that y is, to 0(e), the total flux linkage 411 + 412 in coil 1.

Aggregate physical quantities such as total flux linkage, total charge,

%- total momentum etc., are often slow variables.

Noticing that R2x 2 is the voltage v2 across the secondary winding

of the transformer and using (2.54, (2.56) we obtain as e- 0

. N2-v2 =(-(v+Rx) =- (Vi+Rxl) 2 (2.60)

where N1 ,N2 are the number of turns in coils 1 and 2. When the voltage

drop Rl1x is small compared to v, which is usually the case, (2.60)
1. N2

reduces to the corresponding relation v2 = - 2 v. for a leakage-free

transformer.

Writing M = l L (I - .) we see that, for this

example, Assumption 2.3 is satisfied.

2.6 Structured Singularly Perturbed Forms

Section 3 dealt with the nonexplicit singularly perturbed form

(2.11), in which all the states are, generally, mixed. However, it is

well known that a more structured system matrix implies that state x I

"-. is predominantly slow. In this section, the methodology developed in

Section 3 is used to study two other structured forms, the fast separated

* form and the weak connection form.

A system is said to be in the fast separated singularly perturb.

form if

I-A
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dx1  dx
dA A

d t dTr11 12
= = (2.61)

dx2  dx
_2 eA A

dt dT 21 22

where xlzRh , x2ln 2 , All, A A21 , A are matrices of appropriate

1 ~ g ,A 1 A12  A21  22

dimensions and A22 is a nonsingular matrix. Writing

eA l A1 0 A2 Al 0 ,
A11  12121

+ (2.62)

eA[ 2 A22 0 A22 A21 0

we obtain

F0 A 1
A A (2.63)

... A22,

which satisfies Assumption 1. Since A22 is nonsingular the range and row

spaces have dimensions n2 whereas the left and right null spaces have

dimension n I. It can be verified that

-A A 1 (2.64)
1 -A12A22

W [0 1 ] (2.65)
n2

span the left null and row spaces of A, respectively, and that

,. "0
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FAl A]
-In AI 2  A22

L.jQ (2.66)
-',0 1n2

. span the null and range spaces of Ao , respectively. Morover they satisfy

(2.13).

Corollary 2.5 If A22 is nonsingular, then (i) the change of coordinates

y x A2 2 2  (2.67)

transforms (2.61) into the explicit model (1.1) with z(t) = 0. (ii) The

slow reduced model of (2.61) is

d (A - A A A)7 (2.68)

pdt 11 12 22 21

and the fast reduced model is

-=A z (2.69)
dT A 22 

"

(iii) The state x2 of (2.61) is predominantly fast whereas x1 is mixed.

Proof: (i) follows directly from Theorem 2.2, using (2.64), (2.65). (ii)

is obtained by bearing in mind that i(t) = 0. (iii) follows by inverting

(2.67)

-1
x= y + A 2A2 2 Z, x2 z (2.70)

Note that state x2 (=z) can be used in the fast reduced model (2.69)

4 f, justifying the name "fast separated."

*-,i1

;i~i .--.
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We now turn to the weak connection form which arises naturally in

dynamic networks made of weakly connected "areas" [24-29]. A system is

said to be in the weak connection form if(*

dx dx11-- A+ A1 A-2 xl

dt dT A 11 11 eA12 x1
F = (2.71)

dx dx
2 -2 eAA eA

d t dT 21 2 2+EA2 2 - -x 2 --

where x and x2 are nI- and n2 - vectors, A l A 12' A21 , A22 , A22

are matrices of appropriate dimensions and All A22 are singular matrices

with a complete set of eigenvectors corresponding to the zero eigenvalues,

that is, satisfying

R(A11 ) G(A 11) = , (A2 2) ?? (A2 2 ) = R (2.72)

with

dim R(A11 ) = p1 
- 1, dim ?(AII) = > , p1 + ,= n, (2.73)

dim R(A22 ) = P2  1 1, dim 7(A2 2 ) = v2  P i, p2 + = n2 " (2.74)

Writing

A I+eAI sA2 Al 0 Al A2
11 1 211 A11  A12

1 + [ (2.75)
cA21 A22+EA22 0 AI22 A21 A22

(*)For convenience we deal with only two weakly connected "areas"

but the ideas are directly applicable to any number of areas.
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we obtain

FA 1  0]

A I (2.76)
0 A22 ]

which, because of (2.72), satisfies Assumption 2.1. Let Vi, Wi span the

left null and row spaces of Aii and PV' Qi span the null and range spaces,

- - respectively, i=1,2, satisfying

ViP i = lvi, WiQi = Ipx, i=1,2 (2.77)

Corollary 2.6 Under assumption (2.72), (i) the change of coordinates

": : YX z W x 1

1 . [ :] = (2.78)

transforms (2.71) into the explicit model (1.1) with "(t) = 0. (ii) The

slow reduced model is

Yl V A P V A P2 Y,

1 11 1 1 122[-]=[A ,A (2.79)
2 2 21 1 2 A 2 2 P2  Y2

and the fast reduced model is

Sd 1z [ 1QIA+wl2+lQl W1 1 2Q2  zI

.AQ W A L -A2- 2 21 12 22Q2+c 2A22Q2 2
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Proof: (i) Apply Theorem 2.2 noting that

"2] ,v'w [ (2.81)
-- 0 v 2  0 w 2 -

span the left null and row spaces of A0  respectively. (ii) is obtained

by keeping in mind that z(t) = 0.

There are few interesting points to be noted. From (2.78) a

slow vector yl and a fast vector z, are defined in terms of area x1 only;

similarly for x2 . From (2.80) the fast variables z1,Z2 are only weakly

connected to each other and since Wi Aii Qi' i=1,2 are nonsingular these

connections can be neglected for an 0(e) approximation. The fundamental

difference between the original (2.71) and the transformed system (2.80)

is that (2.80) no longer has a continuum of equilibrium points. Hence,

each area defines a local fast model z connected with O(e) connections

to other local models, whereas contributions yi from each area form a

"slow core" describing the system-wide dynamics of (2.71). It is shown

in Chapters 3 and 4 that this decomposition carries over to nonlinear

weakly connected systems.

Ul

4.
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CHAPTER 3

NONEXPLICIT SINGULAR PERTURBATIONS IN NONLINEAR SYSTEMS

3.1 Introduction

An asymptotic procedure for time-scale separation in nonlinear

models is of paramount importance since a nonlinear analog of the algebraic

transformation in [37,38,41] is not available. In this chapter we give such

a procedure and demonstrate its application to classes of nonlinear systems.

The coordinate free characterization of singular perturbations [16] is

extended to nonlinear systems of the form e~k=h(x,e) and it is shown that

equilibrium and conservation properties lead to a definition of new

coordinates in which time scales are explicit (Section 3.2). In Section

3 3.3 we study a class of nonlinear high gain feedback control systems in

which the controls enter linearly through a constant matrix but the open

* loop system, the output map and the feedback law may all be nonlinear. It

is shown that these systems can be studied through singular perturbation

techniques after they are transformed to the explicit form using the

* . method of Section 3.2. The last section, 3.4, is devoted to interconnected

systems wh ose isolated subsystems posses equilibrium and conservation

properties. It is shown that in such systems weak connections give rise

to two-time-scale behavior. Separation of the time scales defines a slow

"core" which describes the system-wide behavior and a set of fast "residues"

* describing the local behavior of each subsystem. The decomposition, known

for specific classes of linear models such as Markov chains [42-431 linearized

L. models of power systems [24-28,44], electrical networks [44,45] and economic
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systems [46] where it appeared for the first time, is established for a

wide class of nonlinear systems with common features (i) equilibrium and

conservation properties and (ii) weak connections between subsystems.

Using this decomposition we give decentralized stability cirteria for this

class of systems, analogous to those in [47-49].

3.2 Conservation and Equilibrium Properties in Nonlinear Systems

The need for coordinate free characterization of time scales in

nonlinear systems is more pressing than in linear systems. Wide separation

of eigenvalues provides some characterization in linear systems but the

notion of modes is nonexistent in nonlinear systems. It will be shown in

this section that the conservation and equilibrium properties introduced

in Chapter 2 for linear systems can naturally be extended to nonlinear

systems and that they lead to a new set of variables in which the time

scales are explicit.

To motivate the discussion we re-examine the explicit model (1.1)

from a different point of view. Writing (1.1) in the fast time scale

d cf(y,z,E)

(3.1)
dz gyzc
dT

"_ (3.2)
dz g(yzO)
d'r

which has the following two important properties.
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p. Conservation Property A function of the state

a(y,z) = y (3.3)

remains at its initial value (y(O), z(O)) = y(O), that is, it is conserved

during the motion of (3.2).

Equilibrium Property System (3.2) possesses a set of nonisolated

(continuum) equilibrium points defined by

g(y,z,O) = 0 (3.4)

The equilibria defined by (3.4) are the "quasi-steady-states" to which the

fast transients of (3.1) converge as explained in Chapter 1.

A generalized version of (3.1) is a system in the form

dx dxe - - = h(x,e) (3.5)
dt d~T

which in T-scale at e=O

'-. dxx h (x, 0) (3.6)
dT

has equilibrium and conservation properties analogous to the properties

of (3.1). System (3.5) is studied in a domain DcRnx[O,E I in which
0

function h is assumed to be continuously differentiable with respect to

x and e.

-.
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Assumption 3.1 System (3.5) satifies the following conditions for

existence of manifolds(*) S and F.

Equilibrium Manifold S The set

S = txlh(x,O)=0, xED) (3.7)

defines a v-dimensional differentiable manifold, v > 1. Hence, there

exists continuously differentiable function y:Rn-Rp, p=n-v, rank x=p,

V xED such that

<(x)0 <=> h(x,0)=0 (3.8)

that is, in the domain of interest D, every equilibrium of (3.6) satisfies

.p(x)fO and every x satisfying (x)=O is an equilibrium of (3.6).

Dynamic Manifold F There exists continuously differentiable functionir0.... n v)

a:R-R such that for each x(O)=x the p-dimensional (p=n-v) manifold

0;5Fo (xla(x)-a(Xo)=0 ,  rank qx = V) (3.9)

in an invariant manifold of (3.6) that is a trajectory originating in F

remains in F

a(x(r)) - (Xo)=O, V > 0 (3.10)

(*)Manifolds are generalizations to Rn of objects such as curves

and surfaces in R . More precisely, -let O:Rn-Rm be a continuously differenti-

able function from Rn into Rm . Then if the set M = f[xl(x)=O and - - I(x)'has

rank m] is nonempty, it is an r-dimensional manifold, r=n-m [50,51]. .

.jI
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Moreover, for all x ED, manifolds S and F are not tangent to
0 X0

each other, that is, for all x in the intersection of S and F-, xo

rank a =x 1 (3.11)

L ax-

Theorem 3.2 Under assumption 3.1, the change of coordinates

Y= (x) , zCP (x) (3.12)

transforms (3.5) into the separated explicit model (1.1) with

. ... nonsingular and "(t) 0.

Proof: Differentiating (3.10) and using (3.6) we have

-h(x,0) = 0 (3.13)

- Differentiating y=a(x) and using the mean value theorem in e for each

component of h

-ag- h (x e) B (3.14)
dt e ax a

we see that y is the slow variable of (1.1). Using the inverse transforma-

tion x-y(y,z) of (3.12) which exists because of (3.11), and differentiating

z=cp(x) we obtain

-dz =x h(x,¢) = x h(y(y,z),c) = g(y,z,e) (3.15)
;,axa

c
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We show that (ag/az)j is nonsingular by contradiction. Assuming that

7'-. it is singular the equilibrium manifold of (3.14)-(3.15) has dimension

v'. greater than v which is contradiction because (3.12) is a nonsingular

transformation. Finally from xe S <-- x=y(y,O) it follows that h(y(y,O),0)=O

and

g(y,00)=O (3.16)

implying that i(t) 0.

The intuitive idea behind this theorem is illustrated by Fig. 3.1.

If the equilibrium manifold S is attractive, the trajectories of (3.6)

which are confined to some F due to (3.10), converge to S and when T--

they terminate at the intersection of F and S. Instead the trajectories

of (3.5) rapidly approach S staying in a boundary layer close to F and

-.-* then slowly continue their motion remaining close to S. Since the

trajectories are initially close to F the quantity a(x) stays almost

constant during this interval; thus it qualifies as a predominantly slow

variable. On the other hand, the quantity cp(x), which is large away from

S where the trajectory starts, rapidly diminishes when the trajectory

.- approaches S; thus it qualifies as a predominantly fast variable.

As an illustration we consider (3.17)

dx1
dT " 1(x) + (x l+x3) P2( x ) "xl

d -2x2~ (X) - e3(3. 17)

dx2

d- " 1(x) + (x1+x 3 ) Y?2 (x) Ex3

' -%- .
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* over R3 D D = t(xlX 2 ,x 3)I x1 > 1, x2 > 0.5, x3 > 0.5] where yl(x),cp2(x)

-" are continuously differentiable functions defined over D. Setting e=0

in (3.17) we obtain

* dx 1
d- - cp1(x) + (x1+x 3 ) c 2 (x)

dx2
- = -2x2 SO2 (x) (3.18)

dx 3

" = cPl(x) + (xi+x3) cP2 (x)

for which

cp(x)=O q 2 (x)0 (3.19)

I define the equilibrium manifold S. It is easily verified that the

dynamic manifolds are defined by tT(x) = a(x(0)) where

C(x) = (xl+x3 )x2 • (3.20)

The equilibrium manifold and a dynamic manifold of this system are

shown in Fig. 3.1 where functions yl'P2 were chosen as

'" 1(X) = x, c 2 (x) x x 2 x -xl  . (3.21)

3.3 High Gain Feedback and Disturbance Rejection

Use of high gain in feedback loops has been known to reduce the

effects of disturbances, parameter variations and distortions [19,52].

Early investigations using root locus techniques [53] have shown that
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Fig. 3.1 Equilibrium (S) and dynamic (F) manifolds of (3.18).
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under high gain some poles of the closed loop system tend to infinity, a

characteristic of singularly perturbed systems. Similar behavior is

exhibited by multivariable systems [54]. An extensive study of high gain

in Linear Time Invariant (LTI) systems was undertaken in [17,55] where it

was pointed out that every high gain system is a singularly perturbed one

and vice versa. In this section we show that the relation between high

gain feedback and singular perturbations extends beyond the class of LTI

systems.

We consider the system
r

x f(x)+Bu
(3.22)

y g(x)

under the output feedback

u = -k(y) (3.23)

- and we study the behavior of the closed loop system when the gain 1

The state x is a n-vector and the input and output vectors both have

dimension m < n. Functions f,g are defined in a domain D CRnand function
x

k is defined in a domain D C R. All functions are assumed to be differenti-
y

able a sufficient number of times. Moreover we make the following basic

' : assumption.

Assumption 3.3 (a) Matrix B is full rank. Hence, there exists a vxn

(v-n-m) matrix V, rank V=v, such that VB=O.

(b) There exists a unique set point y EDy such that

k(y ) 0 (3.24)

C'

* . . ..o*\****°-**-* .
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(c) Matrix g ,where gx is the partial derivative of g, is
V9l X]

nonsingular T xeD satisfying g(x)-y = 0.
x

Part b of the assumption could be relaxed to allow isolated roots

of (3.24). However, nonisolated roots which imply dead zones are excluded.

When the output is linear in x, y=Cx, Assumption 3.3(c) requires [ to be

nonsingular which is equivalent to the assumption of [17,55] that CB is

nonsingular. Indeed if Assumption 3.3(c) holds [V] B [ %] must be- CB

full rank and (CB) exists; conversely if (CB) exists the row space of

C and the left null space of B are disjoint and [ is nonsingular.

Theorem 3.4 Under Assumption 3.3 the transformation

Ys= V (*) "

*. (3.25)
= g(x)-y

transforms the high gain system (3.22)-(3.23) into an explicit singularly

perturbed form with z=0.

Proof: Substituting (3.23) into (3.22) and rescaling the time, ,T=t/ we

obtain

dx = £f(x) + Bk(g(x)) (3.26)
dT

whose auxiliary system is

dxldI = Bk(g(x)) . (3.27)

We temporarily change notation letting v instead of y denote
the slow variable. The latter has been reserved tor its more traditional
use as an output variable.

I1

-, .* *, .. , > . , - - . .. ._ - . . ,- : : : .. ...... . .- -,- -....... ..-.. .......- ,-
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Since by Assumption 3.3(a)

VP VBk(g(x)) =0 (3.28)

the relation

a (x) =Vx, a(x=a (x (0)) (3.29)

defines the family of m-dimensional dynamic manifolds. By Assumption

3.3(b) all xED satisfying
x

g(x)=y (3.30)

are equilibria of (3.27). Assumption 3.3(c) implies that (3.30) defines

a (n-m)-dimensional equilibrium manifold which is transversal to the

* !dynamic manifolds. The transformation is simply an application of

* Theorem 3.2.

In the new coordinates (3.22)-(3.23) becomes

dy
Vf(y(yZ))

dt

dz (3.31)
" f(y(y ,z) + g Bk(z+y )

dt 'x s

S. 'where x=y(y, Z) is the inverse transformation to (3.25) which exists

because of Assumption 3.3(c).

* ii Corollary 3.5 If (i) Assumption 3.3 is satisfied and (ii) the boundary

layer system

dz*
dT gx Bk(z+y*) (3.32)

x=y(Y' z)
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is asymptotically stable, the response of (3.22)-(3.23) is approximated,

over a bounded interval [0, TI, by

x(t) = Y(s(t), z(-) + 0(E) (3.33)

y(t) = ()+ y + 0(e)
*

where y s(t) satisfies the reduced system

dy s(.4
- = Vf ((Y s ,)) . (3.34) .dt

Proof: Follows immediately from Theorem 3.4 and standard singular

perturbation results.

From (3.33) the output differs from the set point y by the

predominantly fast variable Z+O(E). Hence, any disturbance that can be

modelled as initial condition will appear in the output only over a short

initial interval. Note, however, that with the assumptions in Corollary

3.5 the approximation (3.33) is valid only over a bounded time interval

[0, TI. Under stronger conditions, which essentially amount to

stability requirements on the slow system (3.34), the approximation is

valid over unbounded intervals [36] and disturbance rejection is indeed

achieved. :1
Note also that the dynamic manifold defined in (3.29) is linear

0because we assumed that the input enters linearly through a constant

matrix. If in addition the output is linear in x, the equilibrium mani- 4

fold is linear too and (3.25) is a linear transformation. In this case

the boundary layer system (3.32) depends on z only and application of

"1

-'9
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- Theorem 3.4 and Corollary 3.5 is greatly facilitated since transformation

(3.25) can be inverted explicitly and stability of (3.32) can be checked

more easily. The following example illustrates the discussion above.

Example 3.6 The output of

:k f (x)+u

-(x)+u . (3.35)
k2 2 2

" " 2

y X +X2  (3.36)

S.is fed back through the high gain law

:k(y) =  (-y-y3) (3.37)
E e

This system satisfies Assumption 3.3(a), 3.3(b) and

V= I -11, y=O. (3.38)

It also satisfies Assumption 3.3(c) if we restrict the region of validity

to x1 > 0.6. Transformation (3.25) becomes

y.=°x -xYs 1 2

2
z x +x2  (3.39)

with inverse

r..I+ / 1+4 (y +z
Xl 2

(3.40)i:. - + J'l+;(ys+Z)

2= 2

4'"
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3and the transformed system is

'. dy"::[:i- ff [f (x)-f 2 Wx]

f f Ix=y(ys z) (3.41)

dz 3
E *~-: = 6[2Xlfl(X)+f 2 (X)] j) - [ + 4 . (y +z) I (z+z )

'.!. i lx='y(ys, z) -

Since the boundary layer system

d, 3

"2Z = " * l+ 4 (ys+z) (z+z3) (3.42)

is asymptotically stable in the region of validity, approximation (3.33)

holds for large enough gain.

Transformation (3.25) can also be used to analyze disturbance

rejection when the disturbance is modelled as an input. Consider

t = f(x,w(t)) + Bu
. (3.43)

y = g(x)

under the output feedback

u k(y) (3.44)
I %-

whose difference from (3.22)-(3,23) is that the disturbance w(t) appears

as input to the system. Substituting (3.44) into (3.43) we obtain

:- f(x,w(t))+ Bk<g(x)) (3.45)
dt

which, under Assumption 3.3, can be transformed to

t El
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Urndy 5  A
Vf(y(ysz), w(t))= f(t,ysz)

(3.46)

dz *AA

dt =gxf(Y(ys,z),W(t)) + gxBk(z+y*) _ g(t,ysz,g)

using (3.25). In the following corollary we make use of a theorem in [36]

: . which, for convenience is reproduced in Appendix I.

Corollary 3.7 Assume that w(t) is such that f g, satisfy all the

conditions of the theorem in [361. Then under Assumption 3.3 and for high

enough gain the output of (3.43) remains 0(e) close to the set point y

for all tE [0, ).

Proof: Since the boundary layer system of (3.46)

= gx Bk(-+y) (3.47)

has z=0 as its unique equilibrium and y(0)=y implies z(0)=y(0)-y =0,

the fast part of z is ^(T)=O V tE [0,-). Furthermore, 7(t)=0. Hence,

y(t) z(t) + y = y + 0(c) (3.48)

by the theorem in [361.

The practical use of the above corollary may be limited since it

assumes that w(t) is known so that the assumptions in [36] can be checked.

A much more desirable result would be to establish (3.48) for a class of

inputs w(t). Such a result should draw upon the specific way in which the

disturbance enters into the problem.

L~
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3.4 Interconnected Systems

An appealing approach to large scale system analysis and design

is to view the system as a collection of dynamic subsystems interacting

through static interconnections. The object then is to analyze the

stability of [47-49] or design control laws for the system [56] in a

decentralized fashion, that is, by testing the stability of the subsystems

or designing feedback control using only the subsystem states or outputs.

This approach is based on the premise that the connections between sub-

systems are "weak" compared to the internal connections; hence, qualitative

properties and control design can be performed on the subsystem level.

In this section we show that when subsystems have equilibrium

- , and conservation properties, weak connections give rise to two-time-scale

* . behavior. Subsystems are weakly coupled in the fast time scale but are

- .. strongly coupled in the slow one. We start by showing that such cases

arise naturally in high gain decentralized output feedback. Consider the

interconnected system

k. = f.(x + ix +Bu

Y, ~ ~ (X + Bi d(349

with decentralized output feedback

*We use the word "connection" to mean physical, static interaction
and the word "coupling" to imply dynamic interaction.
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U = (y (3.50)

where Bi, gi, k. satisfy Assumption 3.3, i1,...,2. Substituting (3.50),.

into (3.49) and rescaling the time 7 =  we obtain

dx A

B. k (g.(x.)) + e(fi(x.)+hi(x)) il,...,A (3.51)
dT 2. i 2 .12

whose subsubtems

dx -Adx
-- = B. k.(g.(x.)) i=l,. (3.52)
d 3 1 1

have equilibrium and conservation properties as arged in section 3.3.

Generalizing (3.51) we consider weakly interconne.ted systems

"" of the form

Sdx 
i" -T f i (xi ,) + Egi(xe) i~l,...,A (3.53)

dTi". n i

where f is defined on a domain P)x[0E.]cR x R, gi is defined on
D n T xTlT A

DX(0,E]cR x R, x=[x1 ... and n = n.. Functions f and gi are
i= A

assumed to be sufficiently smooth. In (3.53) fi(xi,,) represents the ith

isolated subsystem [47] whereas, egi(xe) represents interconnections with

other subsystems. Although the dependence of fi on e may seem superfluous,

it is sometimes needed to assure the existence of equilibria of the isolated

subsystems; such a case is discussed in the next chapter in relation to

r: dynamic networks. Concerning the isolated subsystems we make the following

assumption.

Assumption 3.8 Every isolated subsystem

- dxi

d f fi(xi,0) , i1,...,A (3.54)

C"
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has equil.ibrium and conservation properties. That is

(i) the set

S, (x.If,(xi'o)=oI (3.55)

is a v ~dimensional equilibrium manifold of (3.54), 0 < v, n; hence,

there exists smooth function CP.: :R i -R P p~ vi such that

(P. (x. )=0 1-: f (XiO= (3.56)

(ii) there exists function a.i :R '-R such that

F. ( x. jaC(x.) =ix(O) (3.57)

is a family of invariant manifolds of (3.54) parametrized on a.(x.(0)).
3i 3

Moreover, S. and F. are nontangent, i.e.

3. 3.

rank =n , V x ED. (3.58)

where cp' 0 xai are the Jacobian matrices of pli

Corollary 3.9 Under Assumption 3.8 the interconnected system (3.53) is

a two-time-scale system and the transformation

a~ (xi
i~l,...,L(3.59)

transforms (3.53) into an explicit model with V =~v predominantly slow

A =l

variables y and p Z p, predominantly fast variables z for which T=O.
i=l
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S.Proof: Isolated subsystems (3.54) form the auxiliary system of (3.53)

obtained by setting e=0.

Defining

(x al* (x 1)

('2 (x2) 2 (x2 )
. )(x ) a ( x ) = ( 3 .6 0 )

p(x ()

we obtain equilibrium manifold cp(x)=O, and dynamic manifolds a(x(T))=C(x(0))

of the interconnected system satisfying Assumption 3.1. The conclusion is

then an application of Theorem 3.2.

Note that the dimension of manifold S of each subsystem is
allowed to take extreme values 0 and n.. When viO (3.54) has at the mostL: n i
isolated equilibria and its dynamic manifold is the whole space R ; when

V i=n (3.54) is made of ni integrators and its equilibrium manifold is R ni

Note also that transformation (3.59) is block diagonal in the sense that

y and z. are defined in terms of subsystem state x. only.2 . 3 .
..

Noting that

x =y i (y i , z i)

(3.61)
r x = y(y,z) [y(y ,Zl) . . . y (yy,z)]

is the inverse transformation of (3.59) which exists due to (3.58) and

rescaling the time t=ET the transformed model is

7 
.

......................... 
.
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* dyi af (i(Yi~y,z~)C
i + gi(Y(yz), F (Y,Z,)

dt ix asi ''F(yz)

dz" 
(3.62)

d-t '0ix [f i('Yi(YiZi),e)+Egi(Y (y 'z ) ,s) ]  G Gi(Y iZ,) i(YZV )

where Uix,c0ix are the partial derivatives of a,,cp with respect to x,.

According to Corollary 3.9 the quasi-steady-state is "=O, and the slow

model is

d3y.

dt = Fi(Y,O,0) i=l,...,L (3.63)

Rescaling back to T and setting e=O in the second equation of (3.62) we

obtain the fast model

d.
3- = G i )  ill,...'A (3.64)

"T

where y. appears as a parameter.

Note that F. is a function of the whole y vector whereas, Gi is

a function of z. only. Hence, separation of time scales has resulted in
1

. a decomposition in which parts from every subsystem are put together to

form a slow core (y-variables) while the rest of each subsystem forms a

fast residue (zi-variables). The slow core describes the system-wide

dynamics which due to the weak connections between subsystems become

" significant only in the long run. The fast residues describe the local

dynamics which, due to the strong connections within subsystems, are

significant in the short run. if further, the fast residues are asymptoti-

cally stable the zi variables reach quickly their quasi-steady-state
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* equilibrium (zi=O); hence, they are weakly coupled with each other since

interaction from subsystem to subsystem through the weak connections

becomes noticeable oaly in the slow time scale. (See (3.64)). Figure 3.2

gives a pictorial view of the discussion. This decomposition is very

reminiscent of Simon and Ando's reasoning in their classical 1961 paper

[46]. We quote:

(1) We can somehow classify all the variables in the economy

into a small number of groups;

(2) We can study the interactions within the groups as though

the interaction among groups did not exist;

(3) We can define indices representing groups and study the

interaction among these indices without regard to the interactions within

* each group.

Step (1) corresponds in our case to identifying subsystems

connected to each other through weak connections. Step (2) corresponds.

to our fast models (3.64) which are disconnected; we went one step further

.. to remove the slow motion from each subsystem. Step (3) corresponds to

the definition of slow variables yi as "indices" representing subsystems

and the study of the system-wide dynamics through the slow core (3.63).

In the next chapter where the decomposition is specialized to dynamic

*i networks, the slow "indices" take the meaning of aggregate physical

variables.

There is an extensive literature devoted to stability analysis

of interconnected systems [47-49 and references therein]. The general

plan followed is (i) to regard the large scale system as an interconnection
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Slow Core Fast Residues

F P-7505

* . Fig. 3.2 The decomposition into slow core and fast residues.

.;- .. . .
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* of isolated subsystems, (ii) to characterize stability properties of

K '- isolated subsystems through Lyapunov techniques, (iii) to deduce stability

properties of the overall system from stability of subsystems and the

nature of interconnections. A basic assumption in [47,48] is that the

subsystems have isolated equilibria and the results of [47,48] do not

directly apply when the subsystems have nonisolated (i.e., a continuum of)

equilibrium points such as in (3.53) with fi(xi,O) satisfying Assumption 3.8.

We now show that stability criteria analogous to those in [47] can be

derived based on recent results (20] on stability of singularly perturbed

systems. For convenience, these results are reproduced in Appendix II.

We consider the interconnected system (3.53) when fi(xi.,O)

satisfies Assumption 3.8. Using transformation (3.59) we obtain the system

in the explicit singularly perturbed form (3.62). We assume that
"" i Pi

YiED cR ED z cR , i=l,..., and that y=0,z=0 is the unique
Yi

equilibrium of (3.62). Moreover the following assumptions are made

concerning the slow core, the fast residues and their interactions.

Assumption 3.10

(i) The slow core (3.63) has a Lyapunov function V:RV- R such that for all

2 ".-yE Dy
Y~y

T 2
[V yV(y)] F(y,0,0) < - e 1 T (y), at > 0

where y(y) is a scalar valued function of y with T(0)=0 and T(y)#0, y#0.

(ii) Every isolated fast residue (3.64) has a Lyapunov function

W(Y z):R Vi xR Pi-+ such that for all yED ,ziED

SiWi(yi'z i )] T Gi(yi'ziO) < - 2i 2i (z) e2i > 0.
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(iii) There exists Xi > 0, i=l,... A such that for all yED , zED the

following hold:

T A 2
y(a) [V yiWi(Yi)]T Fi(YZe )  c i E Xi .i(zi) -i= I

(b) [V V(y)]T [F(y,z,e)-F(y,O,e)] <0 T(y) (E X 2(z))1/2
y

(c) [Vz Wi(yiZ)]T [Gi(yizi,)-Gi(yi.,ziO)] < e kli i(zid

A 2
iT

. (d) [VZ. Wi(yizi)I Hi(Y'Z') < k2 Z Xi i(zi)

. i=

Constants ci,W,kli,k2 are all assumed to be nonnegative numbers.

Theorem 3.11 If Assumption 3.10 is satisfied and C is sufficiently small

the equilibrium (y=O,z=O) of (3.62) is asymptotically stable.

Proof: Let

W(y,z) = E X. W.(yiz.) (3.65)
ii=l 2

be a tentative Lyapunov function for the boundary layer system, formed by

the zi-systems, i=l,...,A, in (3.64). Then,

T.A
[Vz W(yz)] G(y,z,O) = . V Wi(yiZi) Gi(yi'zi'O)

(3.66)
A._< a2ci Oi(zi) :-5 2 a 2()

<. i=l

where

2) E i 0(z) , c2 min a (3.67)

Hence, V(y),W(y,z) satisfy condition (I), (II) of [20]. Condition Ilia

of [20] is also satisfied since -

J.1

.,.
* *£*. s- -- ., . - -.---..
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!T T

[Vy W(y,z)]T F(y,z,e) = X i [Vy i W i(yii
)zd F i(Y,Z,)

i (3.68)
• !i < . ci 2(z) = (Z Xic i) 42(z)

< " - Z i

S whereas condition 1llb is identical to (iiib) in Assumption 3.10.

Finally, letting

Gi(y,z,e) G i(yi,zi,) + e Hi(Y,Z,E) (3.69)

we have

LVz W(y,z)] T [G(y,z,C) - G(y,z,0)]

T
" [V Wi(yizi)] [Gi(yiziE) - G.(yi,7i,0) + E Hi(y,z,e)] < (3.70)

. i.

2 2 2z

where

k.
K =max 4- k (3.71)

and we see that condition 111c of [20] is also satisfied. The conclusion

follows directly from [20].

A similar procedure cannot be applied to the original model (3.53)

because the isolated systems possess a continuum of equilibrium points. The

V 'basic difference between (3.53) and (3.62) is that in (3.62) all the slow

dynamics giving rise to equilibrium manifolds have been relegated to the

slow core; consequently, the fast residues no longer have a continuum of

4 V equilibrium points. The stability criteria become easy to apply when the

transformed models are structured, such as in dynamic networks, the subject

of the next chapter.

• 4 " " " "" • .•r" " : i. . .." -: ........... .. ...... .. ' .. ... - " ' ' . ...: :-....
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CHAPTER 4

REDUCED ORDER MODELING OF DYNAMIC NETWORKS

4.1 Introduction

Much of the equilibrium-conservation reasoning presented in

Chapters 2 and 3 was inspired by the study of time scales in power systems

and other weakly connected networks. In this class of systems, which is

the subject of the present chapter, states and connections have physical

meaning and separation of time scales is related to physical laws such as

conservation of mass, charge, momentum, etc.

Section 4.2 discusses weakly connected networks with linear

storage but nonlinear interconnection elements. The main result is that

the transformation that brings the system into the explicit singularly

perturbed form is linear. In the new coordinates a slow core describes

the system-wide behavior while fast residues describe the local behavior

of the network. The slow core turns out to be another "aggregate" network

whose states and connections are related in an intuitively appealing way

to the states and connections of the original. These results are then

specialized to power systems and a five-machine example illustrates the

reduction procedure (section 4.3); simulation results are also shown.

In section 4.4 we clarify the relation between coherency and localizability

[24-25] for LTI systems.

,°o
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4.2 Time Scales in Nonlinear Dynamic Networks

The time-scale separation methodology developed in the previous

chapter will now be applied to nonlinear dynamic networks, a class of

p _large systems whose structure facilitates the derivation of reduced models

with physical meaning. The dynamic networks we consider are systems

comprised of storage elements, capable of storing some physical quantity

and interconnection elements capable of transporting this quantity without

delay. Examples of dynamic networks include power systems, where angular

* "momentum stored in the generators is transported through transmission lines,

R-C networks where charge in the capacitors is transported through resistors,

mass-spring systems, etc. The dynamic networks considered first have

storage elements with linear characteristics but their interconnections

3 may be nonlinear. Extension to networks with nonlinear storage elements

is indicated later in the section. The rates of flow in the interconnections

are assumed to be continuously differentiable functions of the potential

a- differences across the interconnections satisfying

fik(xi-xk) = - fki(xk-xi) • (4.1)

This assumption is equivalent to saying that there are neither sources

nor sinks along the interconnection. The dynamics of these systems are

then modeled by either the system of first order equations

Xi "-- [ fik(xi-xk) - Ii] (4.2)
i k ki

or the system of second order equations

m" " [k fik(xi-x) - Ii] (4.3)
ikf. ki
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where xi'mi the potential and inertia of the ith storage element, Ii

the net injection at the ith element, fik( the characteristic of the

interconnection between elements i and j and k the set of elements to
i

which i is connected. In the remainder of this section we deal with

dynamic networks in the form (4.2). In the next section the results will

be applied to power systems whose equations are in the form (4.3).

A dynamic network is said to be weakly connected if some

interconnections can be expressed as multiples of a small parameter e. The

model of a weakly connected network is then

/2"dx 
i

dxi = - 1 [ E f k(x _xk + C g( _ 44m..... - i(e)] (4.4)"'" dT mi 
[ k i f(i-k) + ij xi xj)

". k9. Ki  J EJ

where Ki,J i are index sets representing nodes connected to element i.

Constant I which depends on and is differentiable with respect to c, is a

net injection (of power or current) at node i. Its dependence on g will be

discussed later. A fundamental property of weakly connected networks is

that neglecting the weak connection terms egij results in v isolated "areas"
ii

-:l,...,v. Area a contains n connected nodes and its equation is obtained

by setting =O in (4.4)

dxi 1
=T - f x(454 d-T = "'mi kEKi Lik(Xixk -x i(OJ, iec,, cyl,...,V,. (4.5)

When the states in each area are ordered consecutively the nxv partition

4i matrix U is

- --



63

U diag (u,...,u) (4.6)

where u is an n -vector with all elements one.
w a

p ,Assumption 4.1 Each of the v areas formed by setting e-0 in (4.4) has an

equilibrium state.

In the case of power systems the above assumption requires that

Severy area, when isolated from the rest of the system, has its own load

flow. This will only be possible if the area adjusts its net injections

Ii (e) so that the power exchanged with other areas is compensated internally.

r Thus, the injections Ii(a) are made functions of the strength of the inter-

area connections a. The choice of the dependence of Ii on e and its impact

on the accuracy of the reduced models will be discussed later in the section.

i n each area a we select a reference node xr , re a (*), ad for

e e e e

the difference sir for rE and V ia , i#r, where xxr are the

e
values of xi)xr at an equilibrium x of the area model (4.5).

Theorem 4.2 System (4.5) has an equilibrium manifold S described by

Y, (x)= xiXr-sir = 0 (4.7)

for rEcy; I iEa, i#r and all areas 0i,...,v. The dynamic manifold

F for x(O)-x is
x 0
0

a (x) - c(x) - 0 , 01l,...,v (4.8)

where

a (x) -E rnixi/ E mi (4.9)
Le .' a

..

(*)Abusing notation, we let o be the index of an area as well as

the set of node indices in the area.

- *. * - .I
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U Furthermore,

yax (x) - p1 x (4.10)

are v slow and p-n-v fast variables satisfying Theorem 3.2.

Proof: Any x satisfying

X i,kE01, c'hl,..., V (4.11)

is an equilibrium of (4.5). Following a path from node i to node r,

these relations can also be written as

xf r i i+l)+(i+f 1+2)+ r-(2  rX )+(xr1 lx).Xi r
(4.12)

which is the expression in (4.7).

Writing (4.5) at an equilibrium

0Z f i xk~)-I( iEay, cf~l,...,v (4..13)
mi kE Ki1

and using (4.1) we obtain

E I1(0) -0 , il..v(4.14)

The last relation gives

E mi(dxi/dTr) =0 , (4.15)
iEcy

where (4.1) was used once more. The dynamic manifold (4.8-4.9) is obtained

by integrating and scaling (4.15). Finally the transformation (4.10) is an

application of Theorem 3.2.
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1 5l Note that although the model is nonlinear both the equilibrium

manifold (4.7) and the dynamic manifold (4.8) are linear leading to a

linear transformation separating the time scales. Manifold S is linear

I~. because the right-hand side of (4.5) is a function of a linear combination

(the differences) of the states as opposed to being a function of the

states individually. Manifolds F are linear because the conservation

property is linear. In the case of RC-circuits the conservation property

expresses Kirchhoff's current law (KCL) and in the case of power systems

the conservation of angular momentum. These physical laws are linear even

when some elements of the network have nonlinear characteristics.

S''To rewrite (4.10) in matrix form we define the difference

matrix G = diag (G .. ,G) where

-1 1 0 . . . 0

-1 0 1 . . • 0

G - (4.16)

'.\ -1 0 . . . . 1

".s a (n -l)xn matrix with two nonzero elements per row. Ordering the

istates x in the same area, consecutively, with the reference state first,

denoting M - diag (ml,...,mn) and Ca - (UTU)"- uTM the transformation

S!,(4.10) is

. ,a 0x (417
- G
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where s is a p-vector with components sir. The inverse of (4.17) is

x =[U B] (4.18)

where B 1 G T(GM- G T) Recall from (4.6) that every row of U has

one entry 1 and the rest 0, whence,

xi y +bi(z+s) Y iEcy, Cl,...,v (4.19)

where bi is the i row of B. After simple manipulations we obtain the

transformed model

dy
.dy . [C 9 [(y -y)+(b -b)(z+s)]- Ii(a) (4.20)idT i iEoe Jj i giji j .
dr Bfi,.., -y

iami

= ~ ~dzi - (z1k

=z i

f (z+) 1()+f] S -

dT m ik C k ir Skr)ir(i+ir i.,~ kE Kt  "

m: k r ,.~sd •_c)

r kE K
r

(4.21)S9j I (Yot'Y )+ (b i'bj)(z+s) ]

- 1

'"E g [(y -Y )+(br-bj)(z+s)]]
m r rj

In (4.20), (4.21), iEa,JEO and bi, bg br are the i, J, r rows of B,

respectively, rEcf. Since from (4.14) E 1i(0) = 0, ,

. . ..
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0(c)) - o(, (4.22)
iE a

and the right-hand side of (4.20) is 0(e).

In the original state description (4.4) areas cannot be considered

weakly coupled because over a longer period their interaction through weak

connections becomes significant. In the transformed description the fast-

time area models in z variables are weakly coupled, and the long term area

interaction is approximately described by (4.20), that is, the aggregate

variables y alone. The fundamental difference between this model and the

Foriginal is that the decoupled z-equations obtained by setting e-0 in

(4.21), no longer have a continuum of equilibrium points.

The definition of slow coherency as given in [24-28] is based

on a modal decomposition and is not directly applicable to nonlinear

systems. Since we have shown that the two-time-scale properties remain

valid for nonlinear systems, we will use them for the following generaliza-

tion of the notion of slow coherency.

Slow coherency. States xi,xj of (4.4) are said to be slow

. -'. coherent if x(O)ES implies xi(t)-xj(t) - const y t > 0. States x 'x

are said to be near slow coherent if there exists a bounded function of

time C(t) such that

x(O)e S M* xi(t)-xj (t) const. + q(t), y t > 0. (4.23)

An area is slow coherent if any two states in the area are near slow-

coherent. The following theorem relates weakly coupled areas and slow

coherent areas extending the corresponding result in [24-28].

I" " .:... .. ...: -. :- ; . . .° . ., -:,.. i., -- - -, ..-: ,o .- .. . ._ _ .2. .. : . .. _
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Theorem 4.3 If (4.21) satisfies Assumption 1.2 and e is sufficiently

small, system (4.4) has v slow-coherent areas specified by U.

Proof: From Theorem 4.2, if ijEc

x-xj - (i-Xr)-(xj-Xr) = i-zj + sir-Sjr .  (4.24)i :i

If x(O)ES, z(O)=cp(x(O))=O, which combined with (3.16) and (1.4) implies

that z(t) = O(c). Then (4.23) follows from (4.24).

Model (4.20), (4.21) is in the explicit form (1.1). Hence, "1
£i(

letting e- 0, I = lim and using the fact (Theorem 3.2, Theorem 4.2)

thatz = 0 the slow model is

dy /dt = -(I/ gij[~- )+(b.-b.)s]

iE01 iEJ J
0=1i,.•.•., v

(4.25)

ie o

The fast model is

=Ti d -(l/M 1)[ f~K ik(' 1 k + ir -krkEK i

i .o, k~r

+ fir(ii+sir)-I (0)] j
(4.26)

(l/m 'f (+S) + I (0)]
r kEK kr kkr r

r

iE a, i#r oyl,...,v,

7. .
-2-..2 ,,,.._,, . . . . . : .. . . . . . , . - . .:: . -. .
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N W Slow model (4.25) represents an aggregate dynamic network with storage

elements

" - ayM mi i,...,v (4.27)

T, net injections

I 1 i V (4.28)

c 01

and interconnection characteristics

G (y -  "  [ + (bi-b (4.29)CIO" a 0 E ij a"

JEO

.BThe aggregate model (4.25) is decoupled from the local models

(4.26). Since the sums in (4.26) involve nodes from the same area, the z

equations for two different areas are decoupled, that is, the fast models

(4.26) are local in the sense that they involve quantities from one area

only. Thus, each area uses its local model and at the same time provides

• ' the data and receives results from the global model. This multimodeling

decomposition helps in formulation of decentralized controls [57].

.. V.In (4.4) and in subsequent derivations it was assumed that the

.- ' dependence of the injections I (a) on a is known. In a realistic situation

has a specific value and injections are constant. The dependence on E

is an asymptotic tool guaranteeing that the isolated areas formed by

C- 0 have a well defined equilibrium. Therefore, for any function I(E)

. . . .' .. 
* ...



1 70

satisfying r_ 1,(O) =0, oe',...,v Assumption 4.1 holds and the quantities
iF.

*s in (4.7) are well defined. However, the freedom in choosing I(s)

cnbe utilized to influence the accuracy of reduced models in realistic

systems where e may not be very small.

Note that for a > 0, the equilibria of (4.25), (4.26) are

generally different from the equilibria of (4.20), (4.21). It has beenj

observed in numerical experiments that the approximation of the time

response improves when the equilibrium of the reduced models is closer

to the equilibrium of the original (4.20), (4.21). It is desirable to

make the two equilibria as close as possible, particularly for oscillatory

responses, and if the reduced model (4.25), (4.26) is used for stability

analysis. The following corollaries provide guidance in this direction.

Corollary 4.4 Let xEbe the equilibrium of (4.4). The equilibria of

(4.25), (4.26) are equal to the equilibria of (4.20), (4.21) if and only

if

E
s=Gx .(4.30)

Proof: First note that by Theorem 3.2 and Theorem 4.2 z' 0 is the

*equilibrium of (4.26), irrespective of the choice of s. From (4.17)

E
the equilibrium of (4.21) corresponding to x is

E E4
z -Gx -s (4.31)

which is made zero by (4.30). Setting z =0 in (4.20) to obtain (4.25)

E
does not alter the equilibrium because z 0. The choice (4.30) is unique

because (4.31) is linear in s.
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. .Corollary 4.4 shows that there is a unique s for which the

equilibria of the exact and approximate systems are equal. Since by

definition s = Gxe and G is a matrix of full rank, (4.30) implies that

- e E
x x • (4.32)

The next corollary gives a necessary condition on I (e) such that (4.32)

is satisfied. Boundary nodes are nodes to which interarea connections

are attached.

Corollary 4.5 Equation (4.32) is satisfied only if

E E
1" :()-i(0) E (X _ (4.33)':"., . L.j~ g i j ( i x j )

.E

that is, the net injection at boundary nodes is adjusted by the interarea

Uflow while it is left unaltered at nonboundary nodes.
Proof: For the equilibrium of (4.4)

An(xi-) - - g gi (xi-x ) + Ii(e) (4.34)
kEKi ik JEJi

and for the equilibrium of (4.5)

e e "

" "Ki ik (xi'xk) = li(O)" (4.35)kE Ki

, 2 Hence, (4.33) is necessary for (4.32) to be true.

In cases such as water distribution networks where some storage

elements may be nonlinear, the reduction procedure is still applicable

after some modification. Assuming that the stored quantity is a strictly
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monotonic function of the potential, the dynamics of the network are

described by an equation analogous to (4.2) in which m.1 is now a function

of Xi Equation (4.9) becomes

W (x) C (4.36)
01 in.(x.)

iEa

and the dynamic manifold is no longer linear. The equilibrium manifold,

however, is still given by (4.7).

4.3 Power System Application

The concepts of area aggregation and slow coherency that emerged

from the separation of time scales in dynamic networks (Theorem 4.2)

originated as model order reduction techniques in power systems [21-23].

First, a group of coherent generators, that is, generators that "swing

together" is identified and then this group is replaced with an equivalent

generator. Analytical studies of coherency [58,59] and coherency based

aggregation [24-28] were based on linearized versions of the electro-

mechanical model of power systems. In this section we apply the reasoning

of Section 4.2 to extend the model simplification approach in [24-28] to

the nonlinear electromechanical model, and to more complex models involving

flux decay dynamics and voltage regulator.

The well known electromechanical model [60] of multimachine

power systems is
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where 81 is the rotor angle of machine i, HI is its inertia constant,

p and P are its mechanical input power and electrical output power,
mi ei

respectively, and the small damping was ignored [25]. In this model Pm£

is assumed to be constant and Pei is given by

n
P E vv Bj  sin (8i-6 + v2 (4.38): . ei J=l i i i

- j ~

where vi is the constant voltage "behind the transient reactance," Bi

is the (ij)-th entry of the admittance matrix reduced to the machine nodes

and Gii represents the load conductance at node i.

Substituting (4.38) into (4.37) we obtain

n

E vv sin G )2]G(4.39)2Hii j1e ij (bi 1j)-(Pmi- i id]

j Oi

which is in the form of (4.3) with mi=2Hi, ximSi,

fij (xixj) v B sin (8- ) (4.40)

2I i PUl "vi Gii (4.41)

Multimachine power systems are often comprised of groups of tightly

connected machines with weak connections joining the groups. Assuming

that weak connections are known system (4.39) takes the form (4.4) for

which Theorem 4.2 gives equilibrium and dynamic manifolds and defines slow

and fast variables. Note, however, that since damping was neglected the

response of (4.39) is purely oscillatory and the separation of time scales
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is understood in the sense of separating low frequency from high frequency

oscillations [61]. Using transforma-ion (4.10) we can arrive at expressions

similar to (4.20)-(4.21) from which the slow core and the fast residues are

defined as in (4.25)-(4.26). The reduction procedure in power systems and

some physical interpretations of the reduced models are illustrated through

the following five-machine example.

In the power system of Fig. 4.1, Hi = 0.5, vi=l, i=l,...,5 and

BI2=B23=B45=, B34=B 25=B =B 4=0.1. The net injections Ii and the resulting

steady-state angles (in radians) are given in columns 1 and 2 of Table 4.1.

Table 4.1. Bus angles for five-machine power example

12 3 :

=-0.28 61 0 61 = 0

2 - 0.077 82 = 0.171 62 = 0.215
222

13 = 0.186 63 = 0.391 63 = 0.458

14 = 0.362 64 = 0.723 84 = 1.042

15 = - 0.191 65 = 0.456 65 = 0.730

Note that since admittances B3 4, B2 5, B15 , B14 are much smaller than the

rest, the system is divided into two weakly connected areas = (1,2,3},

(4,5). Suppose now that line B14 is tripped and we want to simulate the%"14

resulting oscillations using reduced models (4.25)-(4.26). The post fault

load flow (shown in column 3 of Table,4.1) gives

II
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-09

FP-7506

Fig. 4.1 Five-machine power system example.
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1Je e
s ,5-e = - 0.215

12 1 12

-32 -6 - 0.243 (4.42)

s45 ' 84-5 = 0.312.

Defining new variables

1+62+83 '4+65
Y3 Y2 = 2

(4.43)

z = 1- 2-s 12 z2 "83-82-s32 z 3  84-65-s45

and letting e- 0 we obtain the slow model

" - 0.033 sin Cy1-i20.068) - 0.033 sin (y-,l2+0.147)

- 0.033 sin ( 1-y2+0.078)-0.057

(4.44)

Y= 0.05 sin (72-Xl-0.078) - 0.05 sin ( O2 1 0.147)

- 0.05 sin ~2-91+0.068)+0.086

and the fast model

z . - 2 sin CZ10.215) - sin ('2+0.243) 0.185 .
z s 1- (z2 (4.45)

2 - -2 sin (C,+0.243) - sin (i1-0.215) + 0.269

z 2 sin ( 3+0.312) + 0.614 • (4.46)

Note that (4.44) is decoupled from (4.45), (4.46). The aggregate model

(4.44) represents the oscillations of the aggregate angles yl,y 2 against

each other, whereas, the local models (4.45), (4.46) represent the

*'

|-. . . . . . . . .
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- intermachine oscillations in areas a,o, respectively. Figures 4.2-4.5

show simulation curves with initial conditions equal to the prefault

equilibrium. Figures 4.2, 4.3 show exact (solid lines) and approximate

(dotted lines) responses of angles 819641 whereas, Figures 4.4, 4.5

*! - - show exact (dotted lines) and approximate (solid lines) responses of the

transformed variables yl,z2 . Note that generator angles are mixed variables,

whereas, yl is predominantly slow and z2 is predominantly fast.

We now turn to more complex models of power systems and again

investigate the effect of weak connections on the time scale behavior of

the system. The model we employ is basically the one in [62] with a slight

simplification; we do not include the fictitious quadrature axis coil g

which is meant to model eddy currents in the rotor. With this simplification

the model is

. 3 77(wi-1) (4.47a)

p
i2H - emi e i -Di (Wi- (4.47b)i = -wi qi qi

q di T e'qi (xdi'x'di) idi+Efdi] (4.47c)

fi- I(-Ri + -Efd i  
(4.47d)

.fdi TI- [1 (E + SE (E fdi Efdi + V i] (4.47e)

TEi S'

idi - e qj cos ) (4.48a)

iqi - E B ej sin - (4.48b)
qi ij qj
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di qi ed+' ix qii (4.49)qqdVti V ' di = di +  'qi Vqi 'qi .

where state e' is proportional to the field flux, equations (4.47d-f)q

model the voltage regulator-exciter system and (4.48), (4.49) give the

interaction of the generators through the transmission network.

If the power system is made of v weakly connected areas, (4.48a),

(4.48b) are written as

idi " Bij e' B ik eqk cos (6i-k) (4.50a)

JE~ qj k4 0

qi" = Ei. e' sin (gi-g) + £ . Bik eqk sin (8 i8k) (4.50b)i . qi Bi q k qk ;

where LEa, c=l,...,v. We now make the important observation that (i)

machines interact solely through currents idsi q and (ii) idiq are functions

of the differences 8i-6 of angles, not of angles individually. Hence,

letting z=O in (4.50) and setting the right-hand side of (4.47) equal to

zero we see that if an assumption analogous to 4.1 is met, points satisfying

.?:W,
-:.::2 8 i"Strir - 0 '

R -Rqi qie
Rfi "Rfie(.1

Efdi, Efdie

VRi =VRi e

-, - - - - - - - - - -
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3 5 where subscript e denotes equilibrium and rE0., iE a, i1r, cfil,...,v are

equilibrium points of (4.47). That is, (4.47) at e-0 has a v-dimensional

' .: equilibrium manifold described by (4.51). An argument similar to the one

in Theorem 4.2 shows that

D
-(8,w) E - 8i + E 2Hiwi - a(8(0),w(O)) (4.52)377

iE 0 iE

for O-1,...,v defines the family of dynamic manifolds of (4.47). In all

realistic cases Di <<377 so that we can ignore the first term in (4.52).

Note that although we started with a higher-dimensional model of the power

system the equilibrium and conservation relations (4.51), (4.52) involving

8,w variables are identical to the ones obtained by working with the

electromechanical model. Consequently, we obtain an electromechanical

slow model involving the aggregate variables 8 = ( F 2H / 2Hi,

W =8

4.4 Coherency and Lo-alizability

As shown in Section 4.2 weak connections in a dynamic network

give rise to slow-coherent groups of states which are described by local

models. We now restrict ourselves to linear time invariant systems and

investigate the relation between coherency and localizability when weak

connections are not present. This discussion clarifies the presentation

in [24,25] where the two notions wert essentially treated as equivalent.

) iFor the sake of completeness we repeat here the definirion of coherency

of (24,25].
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"* Definition 4.6 Let xiAx be a LTI system, a be a subspectrum of A and V

be the corresponding eigenspace. Then states x i and x are said to be

coherent with respect to a if and only if, x(0)EV implies thatma

xi(t) - x (t) , Y t 0 • (4.53)

A group of states is said to be a a-coherent group if any two states from

the group are coherent with respect to a.

Suppose now that n states of a system are considered to belong

to a group a. The criterion for such grouping can be geographic proximity,

accessibility to remote sensing or similar. In an attempt to describe the

"local" behavior in the group we use n -1 differences x±-xK, where i,k

belong to the , set of indices. Typically, we fix index k as the local

reference and take all ifk in the group 0 to form the differences. We then

investigate under what conditions the local variables

z [G 1 O]x G0 x (4.54)

where

n

-l 1 0 . . .0

-1 0 0 . . 0
G n-I (4.55)

-1 0 . . . . 1

are independent of the rest of the system.

i : " .'" "-" '" -'-" - " "-. . .. -- " • " I:
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i * Definition 4.7 Group a, is said to be localizable if there is an A

such that (*)

-i-A z (4.56)

of

Lemma 4.8 A group of states is localizable if and only if it is a

c-coherent group and

In -n-n +1 (4.57)
a,

r
where n is the number of modes in a.

Proof: If the group is localizable z can be decoupled from system

implying that n-n +1 modes are unobservable from z. If V is a basis
-" ,

of the eigenspace corresponding to these modes

G V 0 (4.58)

which implies that rows of V corresponding to states in the group are

equal. Hence, it is a coherent group. Conversely, the rows of V

corresponding to a coherent group are equal implying that n modes are

unobservable. When n satisfies (4.57) the number of observable modes

is n -1 which equals the dimension of z and the group is localizable.

Note that for V to be full rank n has to satisfy
a a

n _n- n +1 (4.59)
a a

(*)The notion of localizability is identical to aggregability

with respect to matrix Go of (4.54). To avoid confusion we reserve the
latter term for "area" aggregation.
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Hence, for the coherent group to be localizable n is required to take its

maximum permissible value. Note also that the smaller the group the larger

n and the harder it is to satisfy the localizability conditions. On the
~other hand we do not benefit much by localizing a large group. Finally,

note that the only modes observable from the local variables of a localiz-

i' i able group are the complementary modes q henceforth, called local modes. ..

When a system is divided into more groups of states the localiz-

ability conditions can be applied independently to each group. As an

example, let the modal matrix of a 5-state system be

1  X 2  X3  x4  X5  i

x a b c *

x2 a b c * 1
a b c *(4.60)

x* n k A m

x* n k £ m

where the stars can be any numbers such that the matrix is nonsingular. -

Group o - (X1,X2 ,X3 } is a a -coherent group where ac = (XA,, 31 and

satisfies (4.57). Hence, it is localizable and its local modes are

c
)c]. Likewise group (x4 ,x5 } is a , (%2' X3'4'X 5  satisfies !

(4.57) and it is localizable with local modes a (XI]. When, as in the

above example both the groups and the local modes are disjoint, the

system is called multi-localizable. "
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o UAs it is clear from (4.60) the multi-localizability conditions

K "are very stringent. Note that in a multi-localizable system, each set of

local variables decouples from the rest of the system and observes only

the local modes. A less stringent requirement is that the local variables

from the different groups decouple from the system as a single set.

Definition 4.9 Let the states of k-A be divided ivto r disjoint groups,
x

each consisting of two or more states, and s states not assigned to any

group. Then the system is called decomposable if the local variables

°C1
0

Z 0 x GT x (4.61)%T

0 G I
r

decouple from the system that is if there is a matrix A such that
A

A z (4.62)

where
4 n

I -i 1 0 . . 0

-1 0 1 . . . 0

G n-1 (4.63)

".. -l 0 • • . I

- .

f1

4 4 V



4i-124 423 NONEXPLICIT SINGULAR PERTURBATIONS RND INTERCONNECTED 2/2 \
SYSTENS(U) ILLINOIS UNIV AT URBANA DECISION AND CONTROL
LAB G H PEPONIDES SEP 82 DC-55 NSI8i4-79-C-8424

UNLSSIFIED F/G 12/1i N

FEND



-----------------------------

lu ILA MI

1.25 = 11-6

MICROOPY ESOLTIONTESTCHAR

NAIOA BUEU FSANAD16-

L .



88

is the number of states in group v and the s single states are the

last entries of x.

The following lemma establishes the relationship between

decomposability and coherency.

Lemma 4.10 A system is decomposable if and only if each of its groups is

coherent with respect to the same set of modes a and

r+ s n (4.64)

where n the number of modes in a"

Proof: If a system is decomposable, only n-s-r modes are observable from

the same number of local variables z. Let aa be the set of r+s unobservable

modes and V a basis for the corresponding eigenspace. Then

11 T V - o (4.65)

which implies that each of the r groups is a coherent group with respect

to qa" Conversely if all the groups are coherent with respect to 0a modes

are unobservable from z. If further the number of the z variables n-s-r

equals the number of observable modes n-n, that is (4.64) is satisfied,

the system is decomposable.

As an illustration consider again groups a and in (4.60).

Both c and p are coherent with respect to aa " m(X 2 ,X" and the two

modes (a equal in number the two areas. Hence, the system in (4.60) is

decomposable.

'.,J
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CH&PTER 5
SUGGESTIONS AND CONCLUSIONS

* ~5.1 Suaestions for Further Research

The ideas in this thesis can be extended in several directions.

In Chapters 2 and 3 we showed that equilibrium and conservation properties

of an auxiliary system imply multi-time-scale behavior. However, we did

not investigate the relation between the two properties. Does the existence

of one property imply the other? And under what conditions? It is clear

L that in Linear Time Invariant systems with simple structure of Z(A )

'. (Equations (2.1l)-(2.13)) the two properties are equivalent. We feel that

the existence of an equilibrium manifold implies conservation properties

, in a wide class of nonlinear systems. This issue and the one of systematic

* ", procedures for finding equilibrium and dynamic manifolds deserve further

investigation. A look at the decomposition in [63] and the differential

geometry techniques used therein should prove useful. Time scales in

discrete-time systems is a rather neglected topic. Does the coordinate-

-free characterization carry over to this class of systems? And how are

time scales related to the sampling period?

We have dealt mostly with time scales of free systems. On the

other hand, high gain control is known to change the time-scale behavior

(Section 3.3) of systems. In Section, 2.5 we have given conditions under

-" which nonexplicit controlled LTJ models can be transformed to explicit

2controlled models. Similar results for nonlinear systems would be desirable.
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This issue is related to extension of the high gain results of Section 3.3

to wider classes of systems. A rather easy extension would be to include

dependence of matrix B on x.

The decomposition into a slow core and fast residues seems

promising in decentralized and hierarchical control design along the lines

of [57]. When dealing with physical systems such as power systems,

prospects for implementation of such designs should be a consideration.

In terms of practical significance the time scale decomposition

of dynamic networks in Sections 4.2,4.3 seems to be the most promising.

Stability tests by decomposition methods have been used in power systems

(64] but they usually give conservative results. We feel that the decomposi-

tion into slow core and fast residues takes advantage of the structure of

the system (weakly connected areas) and it is likely to provide practical

results. Moreover, it can furnish information on the type of instability,

that is intermachine of interarea instability. It would also be interesting

to study time-scale separation and stability questions using more complex

generator models and an unreduced network.

5.2 Conclusions

Singular perturbations have been related to equilibrium and

conservation properties of an auxiliary system. Besides providing a

coordinate-free characterization of singularly perturbed systems, these

properties have been used in definition of new predominantly slow and

predominantly fast coordinates. In the new coordinates an extensive amount

of literature provides simplified models, asymptotic calculations, two-stage

designs and stability tests.

* . *.* *.* - *-
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AResults on high gain feedback control have been extended to a

class of systems u-ch larger than LTI systems. Disturbance rejection

behavior has been shown to be similar to the one in the LTI case.

The relation between weak connections and time scales in a class

of interconnected systems has been established. Weak connections combined

with equilibrium and dynamic manifolds of the subsystems give rise to

multi-time-scale behavior. Separation of the time scales results in a

*l slow core describing the system-wide dynamics and a set of fast residues

describing the local dynamics. In the new representation recent stability

results can be applied to give decentralized stability tests.

-hen the interconnected system has the added structure of a

dynamic network the slow core and the fast residues acquire physical

significance and the definition of slow and fast variables is related to

physical laws. The linearity of these laws makes the transformation

separating the time scales linear. This transformation is the area

P aggresgation-slow coherency one, developed for linearized models of power

systems.

, . ."-

. . . . . . . . . . . . . . . . . .
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APPENDIX I. SINGULAR PERTURBATION ON THE INFINITE HORIZON

Under consideration is the system

-f(t.,z.C) y(t )=Yo

(P)
dz gtyzc)zt)=z

dt ~0 0

with degenerate system

(D) -f(t'y'OO) ,y(t )-yo

and boundary layer system

(BL) - g (Cy ,Z')

where (c~)are treated as parameters. In (P) x,f are k-vectors, g,y

are J-vectors and, without loss of generality it is assumed that

g(t,y,O,) - 0 for all t,y.

Let lxi E 1 xii be the norm of x, let I -[,]

-((Y,z) e Eki lyl + IzI < R} and let sR~)g represent the
k

restrictions of S R to E andE

The following assumptions are made about (P), (D), (BL).

(1) System (P) has a solution y - y(t), z = z(t) that exists for

t < t < ..

MI) f~~yf~tgyvz C where f xdenotes the matrixBY 3

'-4A
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(III) Function f is continuous at z-Og-0 uniformly in (ty) E x SK 5Ry

and f(t,y,O,O), f (t,y,O,O) are bounded on I x S
y :

(IV) Function g is continuous at e-O uniformly in (t,y,z)E I x S , and

- g(ty,zO) and its derivatives with respect to t and the components of y,z

are bounded on I x SR.

To stiplify notation let Y be the class of all continuous,

strictly increasing, real valued functions d(r), 0 < r with d(O) 0;

and let Pbe the class of all nonnegative, strictly decreasing, continuous,

real-valued functions a(s), 0 < s <.m for which a(s)-0 as s-.#.

(V) The zero solution of D is uniform-asymptotically stable. That is,

if x - O(t,toyo) is the solution of (D), a dE Wsuch that
o0

3 I(t't 0 y°) <d(lyol) a(t-t°) for JyoS R, 0 < t o < t

(VI) The zero solution of (BL) is uniform-asymptotically stable uniformly

* .i . in the parameter (a,P)E I x SRjy. That is, if y - Y(s,z ,xP) is the

solution of BL, a eEK,pE.P, such that

- lfSzo ,a,P < e(Iz I) p(s)

for all 0 < s < -, loy01 - R and (a, I x S R.

Then the following Theorem is true [36J.

Theorem [36] Let conditions (I) through (VI) be satisfied. Then for

r sufficiently small (yol + izol and a the solution of the perturbed system

- (P) exists for t < t < a, and this dolution converges to the solution of

the degenerate system (D) as c-.0 uniformly on all closed subsets of

t 0 t<m.

r2
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APPENDIX II. A STABILITY THEOREM

*.4

Consider

= f(yzs) YE By C Rn

(Pi ) g(y,z,E) ze Bz C R7

where ByB z denote closed spheres centered around y-0, z-O. Assume that

yzzy-0, z-0 is the unique equilibrium of (P) in ByB and that g(yO0,) = 0, !

for all yE B The reduced system of (P) is
y

(R) - f(y,O,O) fr(y)

and its boundary layer is

(BL) dz S (yz(),O)

Let the following assumptions be satisfied.

(I) Reduced system (R) has a Lyapunov function V:Rn-R, such that for all

.:;. e By,

[Vy V(y)JT fr (y) < 011 2(y) 11 > 0

where T(y) is a scalar-value d function of y with T(0) - 0, T(y) € 0

if y 00.

74(I) Boundary-layer system (BL) has a Lyapunov function W(yz):Rnx R-.R

such that for all ye By, zE B
y z

.

- p ~ *r. .- - * . C ~ * ~ * . *
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[vZ W(y,z)]T S(y,z'O) < - 2 (z) O2 > 0

where ((z) is scalar valued and 4(0)-0, ((z)#O if zO.

(III) The following inequalities hold for all yE By, zE Bz

.- (a) [V1 W(yz)J f(yz) - C1  2(z) + C2 O(z) Y(y)
T

(b) [V V(y)] [f(y,z) - f(y,0)] Pl '(Y) 4 (z)
y

(c) [Vz W(yz)] T [g(y,z,) - g(yz,0)j C 6K1 (2(z) + CK2 T(Y) 4 (z)

Theorem [20] If conditions (I)-(IIt) are true, the origin x=O,y-O is an

asymptotically stable equilibrium point of (P).

. . .
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